Background
Liquid biopsy assays that detect cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) are a promising tool for disease monitoring in pediatric patients with primary central nervous system (CNS) tumors. As a compliment to tissue-derived molecular analyses, CSF liquid biopsy has the potential to transform risk stratification, prognostication, and precision medicine approaches.
Methods
In this pilot study, we evaluated a clinical pipeline to determine feasibility and sensitivity of low-pass whole genome sequencing (LP-WGS) of CSF-derived cfDNA from patients with CNS embryonal tumors. Thirty-two longitudinal CSF samples collected from 17 patients with molecularly characterized medulloblastoma (12), embryonal tumor with multilayered rosettes (2), CNS embryonal tumor, NEC (2), and atypical teratoid/rhabdoid tumor (1) were analyzed.
Results
Adequate CSF-derived cfDNA for LP-WGS analysis was obtained in 94% of samples (30/32). Copy number variants compatible with neoplasia were detected in 90% (27/30) and included key alterations, such as isodicentric ch17, monosomy 6, and MYCN amplification, among others. Compared to tissue specimens, LP-WGS detected additional aberrations in CSF not previously identified in corresponding primary tumor specimens, suggesting a more comprehensive profile of tumor heterogeneity and evolution of cfDNA profiles over time. Among the 12 CSF samples obtained at initial staging, only 2 (17%) were cytologically positive, compared to 11 (92%) that were copy number positive by LP-WGS.
Conclusions
LP-WGS of CSF-derived cfDNA is feasible using a clinical platform, with greater sensitivity for tumor detection compared to conventional CSF cytologic analysis. Large prospective studies are needed to further evaluate LP-WGS as a predictive biomarker.