Purpose of review
The landscape for age-related macular degeneration (AMD) is rapidly changing with addition of biosimilars and now United States Food and Drug Administration (FDA) approved nonneovascular AMD (nnAMD) treatment options. These developments have inspired a burgeoning pipeline of gene therapy approaches focused on similar antivascular endothelial growth factors (VEGF) and complement related pathways. Historic and more recent setbacks in the gene therapy pipeline, including intraocular inflammatory reactions, have raised important concerns for adverse events related to AMD therapeutics both for gene and nongene approaches. The specific clinical profile of these therapeutics approaching later stage clinical trials are complex and under active investigation; however, these options hold promise to disrupt the current landscape and change management paradigms for one of the leading causes of vision loss worldwide.
Recent findings
This review covers current gene therapy approaches for neovascular AMD (nAMD) and nnAMD. Intravitreal, suprachoroidal, and subretinal delivery routes are discussed with attention to technical procedure, capabilities for transgene delivery to target tissue, immunogenicity, and collateral effects. Suprachoroidal delivery is an emerging approach which may bridge some of the practical drawbacks for intravitreal and subretinal methods, though with less elaborated immunologic profile. In parallel to delivery modification, viral vectors have been cultivated to target specific cells, with promising enhancements in adeno-associated viral (AAV) vectors and persistent interest in alternate viral and nonviral delivery vectors. Ongoing questions such as steroid or immunosuppressive regimen and economic considerations from a payer and societal perspective are discussed.
Summary
The present review discusses emerging gene therapy options which could foster new, more durable nAMD and nnAMD therapeutics. These options will need refinement with regards to route, vector, and dosage, and specialists must decipher the specific clinical risk benefit profile for individual patients. Ongoing concerns for immunogenicity or dosage related adverse events could stifle progress, while further vector development and refined delivery techniques have the potential to change the safety and efficacy of currently options in the pipeline.