Background
The worldwide trend of demographic aging highlights the progress made in healthcare, albeit with health challenges like Alzheimer’s Disease (AD), prevalent in individuals aged 65 and above. Its early detection at the mild cognitive impairment (MCI) stage is crucial. Event-related potentials (ERPs) obtained by averaging EEG segments responded to repeated events are vital for cognitive impairment research. Consequently, examining intra-trial ERP variability is vital for comprehending fluctuations within psychophysiological processes of interest. This study aimed to investigate cognitive deficiencies and instability in MCI using ERP variability and its asymmetry from a prefrontal two-channel EEG device.
Methods
In this study, ERP variability for both target and non-target responses was examined using the response variance curve (RVC) in a sample comprising 481 participants with MCI and 1,043 age-matched healthy individuals. The participants engaged in auditory selective attention tasks. Cognitive decline was assessed using the Seoul Neuropsychological Screening Battery (SNSB) and the Mini-Mental State Examination (MMSE). The research employed various statistical methods, including independent t-tests, and univariate and multiple logistic regression analyses. These analyses were conducted to investigate group differences and explore the relationships between neuropsychological test results, ERP variability and its asymmetry measures, and the prevalence of MCI.
Results
Our results showed that patients with MCI exhibited unstable cognitive processing, characterized by increased ERP variability compared to cognitively normal (CN) adults. Multiple logistic regression analyses confirmed the association between ERP variability in the target and non-target responses with MCI prevalence, independent of demographic and neuropsychological factors.
Discussion
The unstable cognitive processing in the MCI group compared to the CN individuals implies abnormal neurological changes and reduced and (or) unstable attentional maintenance during cognitive processing. Consequently, utilizing ERP variability measures from a portable EEG device could serve as a valuable addition to the conventional ERP measures of latency and amplitude. This approach holds significant promise for identifying mild cognitive deficits and neural alterations in individuals with MCI.