Soil physiochemical properties are regulated by cropping practices, but little is known about how tillage influences soil microbial community diversity and functions. Here, we assessed soil bacterial community assembly and functional profiles in relation to tillage. Soils, collected in 2018 from a 17-year field experiment in northwestern China, were analyzed using high-throughput sequencing and the PICRUSt approach. The taxonomic diversity of bacterial communities was dominated primarily by the phyla Proteobacteria (32–56%), Bacteroidetes (12–33%), and Actinobacteria (17–27%). Alpha diversity (Chao1, Shannon, Simpson, and operational taxonomic unit (OTU) richness) was highest under no-tillage with crop residue removed (NT). Crop residue retention on the soil surface (NTS) or incorporated into soil (TS) promoted the abundance of Proteobacteria by 16 to 74% as compared to conventional tillage (T). Tillage practices mainly affected the pathways of soil metabolism, genetic information processing, and environmental information processing. Soil organic C and NH4–N were the principal contributors to the diversity and composition of soil microbiota, whereas soil pH, total nitrogen, total P, and moisture had little effect. Our results suggest that long-term conservation practices with no-tillage and crop residue retention shape soil bacterial community composition through modifying soil physicochemical properties and promoting the metabolic function of soil microbiomes.