Heterogenity between sexes in terms of both the level and the type of immune response to infection is documented in many species, but its role on parasite evolution is only beginning to be explored. We adopt an evolutionary epidemiology approach to study how the ability of a host to respond to infection through active immunity (resistance) or through minimizing deleterious effects of a given parasite load (tolerance) affects the evolution of parasite virulence. Consistently with earlier models, we find that increases in host resistance and tolerance both favour more virulent parasite strains. However, we show that qualitatively different results can be obtained if dimorphism between the sexes occurs through resistance or through tolerance depending on the contact pattern between the sexes. Finally, we find that variations in host sex ratio can amplify the consequences of heterogeneity for parasite evolution. These results are analysed in the light of several examples from the literature to illustrate the prevalence of sexually dimorphic immune responses and the potential for further study of the role of sexual dimorphism on parasite evolution. Such studies are likely to be highly relevant for improving treatment of chronic infections and control of infectious diseases, and understanding the role of sex in immune function.