Habitats modify the population ecology of species. Here, we show how low water level influences abundance and size of adult anadromous brown trout (Salmo trutta) entering a small, South Norwegian stream for spawning. After smolting, the fish appear chiefly to feed within 10 km of the home stream. In the autumn, South Norwegian streams typically flood because of heavy rainfall, when the anadromous brown trout entered from the sea. Mean annual duration of the upstream migration period was 34 days and ended when the flooding ended and the water temperature dropped to below 4°C. During most of the migration period, on average two trout ascended the river per day. The sexes entered the spawning area concurrently, and the male:female ratio of the anadromous trout was 1.27. No fish entered when the water depth just downstream of the spawning area was below 5 cm, and mean number of fish increased with increasing water depth to ca. 30 cm, but not at higher flows when the ascent gradually decreased. Mean and maximum size of the entering spawners increased with water depth between 5 and 16 cm. Among those that had been to sea, most were recaptured in the home stream, 4% in other streams, but only two of the strays were caught close to spawning time. The present results illustrate that population traits of anadromous brown trout from a small stream differ from those in larger rivers, probably because of selection associated with water flow.