2022
DOI: 10.48550/arxiv.2206.08890
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Disentangling Model Multiplicity in Deep Learning

Abstract: It is prevalent and well-observed, but poorly understood, that two machine learning models with similar performance during training can have very different real-world performance characteristics. This implies elusive differences in the internals of the models, manifesting as representational multiplicity (RM). We introduce a conceptual and experimental setup for analyzing RM and show that certain training methods systematically result in greater RM than others, measured by activation similarity via singular ve… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?