Understanding the relationships between seed traits and germination responses is crucial for assessing natural regeneration, particularly in threatened ecosystems like the seasonally dry tropical forest (SDTF). This study explored links between seed traits (mass, volume, moisture content, and dispersal type), germination responses (germinability, germination speed (v¯), time to 50% of germination (T50), synchrony, and photoblastism), and physical dormancy (PY) in 65 SDTF species under experimental laboratory conditions. We found that species with smaller seeds (low mass and volume) had higher v¯ and reached T50 faster than species with larger seeds. For moisture content, species with lower moisture content had higher germinability and reached the T50 faster than seeds with high moisture content. Abiotic dispersed species germinated faster and reached the T50 in fewer days. Most of the SDTF species (60%) did not present PY, and the presence of PY was associated with seeds with lower moisture content. As for photoblastism (germination sensitivity to light), we classified the species into three ecological categories: generalists (42 species, non-photoblastic), heliophytes (18 species, positive photoblastic, germination inhibited by darkness), and sciadophytes (5 species, negative photoblastic, light inhibited germination). This study intends to be a baseline for the study of seed ecophysiology in the SDTF.