2022
DOI: 10.48550/arxiv.2204.06546
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Disentangling Uncertainty in Machine Translation Evaluation

Abstract: Neural-based machine translation (MT) evaluation metrics are progressing fast. However, these systems are often hard to interpret and might produce unreliable scores when human references or assessments are noisy or when data is out-of-domain. Recent work leveraged uncertainty quantification techniques such as Monte Carlo dropout and deep ensembles to provide confidence intervals, but these techniques (as we show) are limited in several ways. In this paper we investigate more powerful and efficient uncertainty… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?