Abstract:Neural-based machine translation (MT) evaluation metrics are progressing fast. However, these systems are often hard to interpret and might produce unreliable scores when human references or assessments are noisy or when data is out-of-domain. Recent work leveraged uncertainty quantification techniques such as Monte Carlo dropout and deep ensembles to provide confidence intervals, but these techniques (as we show) are limited in several ways. In this paper we investigate more powerful and efficient uncertainty… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.