Ultraviolet disinfection is a frequent option for eliminating viable organisms in ballast water to fulfill international and national regulations. The objective of this work is to evaluate the reduction of microalgae able to reproduce after UV irradiation, based on their growth features. A monoculture of microalgae Tisochrysis lutea was irradiated with different ultraviolet doses (UV-C 254 nm) by a flow-through reactor. A replicate of each treated sample was held in the dark for 5 days simulating a treatment during the ballasting; another replicate was incubated directly under the light, corresponding to the treatment application during de-ballasting. Periodic measurements of cell density were taken in order to obtain the corresponding growth curves. Irradiated samples depicted a regrowth following a logistic curve in concordance with the applied UV dose. By modeling these curves, it is possible to obtain the initial concentration of organisms able to reproduce for each applied UV dose, thus obtaining the dose-survival profiles, needed to determine the disinfection kinetics. These dose-survival profiles enable detection of a synergic effect between the ultraviolet irradiation and a subsequent dark period; in this sense, the UV dose applied during the ballasting operation and subsequent dark storage exerts a strong influence on microalgae survival. The proposed methodology, based on growth modeling, established a framework for comparing the UV disinfection by different devices and technologies on target organisms. This procedure may also assist the understanding of the evolution of treated organisms in more complex assemblages such as those that exist in natural ballast water.