2020
DOI: 10.1101/2020.09.24.312686
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Disinhibitory circuitry gates associative synaptic plasticity in olfactory cortex

Abstract: Inhibitory microcircuits play an essential role in regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration in pyramidal neurons act as gatekeepers for neural activity, synaptic plasticity and the formation of sensory representations. Conversely, interneurons that specifically inhibit other interneurons can open gates through disinhibition. In the rodent piriform cortex, relief of dendritic inhibition permits long-term potentiation (LTP) of the recurrent syna… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 67 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?