2024
DOI: 10.1093/qmath/haae024
|View full text |Cite
|
Sign up to set email alerts
|

Disjoint Dunford–Pettis-Type Properties in Banach Lattices

Geraldo Botelho,
José Lucas P Luiz,
Vinícius C C Miranda

Abstract: New characterizations of the disjoint Dunford–Pettis property of order p (disjoint DPPp) are proved and applied to show that a Banach lattice of cotype p has the disjoint DPPp whenever its dual has this property. The disjoint Dunford–Pettis$^*$ property of order p (disjoint $DP^*P_p$) is thoroughly investigated. Close connections with the positive Schur property of order p, with the disjoint DPPp, with the p-weak $DP^*$ property and with the positive $DP^*$ property of order p are established. In a final secti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?