Abstract. Let R be a ring, A ¼ M n ðRÞ and : A ! A a surjective additive map preserving zero Jordan products, i.e. if x; y 2 A are such that xy þ yx ¼ 0, then ðxÞ ðyÞ þ ðyÞ ðxÞ ¼ 0. In this paper, we show that if R contains 1 2 and n 5 4, then ¼ ', where ¼ ð1Þ is a central element of A and ' : A ! A is a Jordan homomorphism.2000 Mathematics Subject Classification: 15A04, 47B49