In an era where digital connectivity is increasingly foundational to daily life, the security of Wi-Fi Access Points (APs) is a critical concern. This paper addresses the vulnerabilities inherent in Wi-Fi APs, with a particular focus on those using proprietary file systems like MiniFS found in TP-Link's AC1900 WiFi router. Through reverse engineering, we unravel the structure and operation of MiniFS, marking a significant advancement in our understanding of this previously opaque file system. Our investigation reveals not only the architecture of MiniFS but also identifies several private keys and underscores a concerning lack of cryptographic protection. These findings point to broader security vulnerabilities, emphasizing the risks of security-by-obscurity practices in an interconnected environment. Our contributions are twofold: firstly, based, on the file system structure, we develop a methodology for the extraction and analysis of MiniFS, facilitating the identification and mitigation of potential vulnerabilities. Secondly, our work lays the groundwork for further research into WiFi APs' security, particularly those running on similar proprietary systems. By highlighting the critical need for transparency and community engagement in firmware analysis, this study contributes to the development of more secure network devices, thus enhancing the overall security posture of digital infrastructures.