The fast transitions between different types of quasi-periodic oscillations (QPOs) are generally observed in black hole transient sources (BHTs). We present a detailed study on the timing and spectral properties of the transitions of type-B QPOs in MAXI J1348-630, observed by Insight -HXMT. The fractional rms variability-energy relationship and energy spectra reveal that type-B QPOs probably originate from jet precession. Compared to weak power-law dominated power spectrum, when type-B QPO is present, the corresponding energy spectrum shows an increase in Comptonization component and the need for xillverCp component, and a slight increase of height of the corona when using relxilllp model. Therefore, we suggest that a coupled inner disk-jet region is responsible for the observed type-B QPOs transitions. The time scale for the appearance/disappearance of type-B QPOs is either long or short (seconds), which may indicate an instability of disk-jet structure. For these phenomena, we give the hypothesis that the Bardeen-Petterson effect causes disk-jet structure to align with BH spin axis, or that the disappearance of small-scale jets bound by the magnetic flux tubes lead to the disappearance of type-B QPOs. We observed three events regarding the B/C transitions, one of which occurred in a short time from ∼ 9.2 Hz (C) to ∼ 4.8 Hz (B). The energy spectral analysis for the other two transitions shows that when type-C QPO is present, the Comptonization flux is higher, the spectrum is harder and the inner radius of disk changes insignificantly. We suggest that type-C QPOs probably originate from relatively stronger jets or corona.