It has been shown in experiments that self-climb of prismatic dislocation loops by pipe diffusion plays important roles in their dynamical behaviors, e.g., coarsening of prismatic loops upon annealing, as well as the physical and mechanical properties of materials with irradiation. In this paper, we show that this dislocation dynamics self-climb formulation that we derived in Ref.[1] is able to quantitatively describe the properties of self-climb of prismatic loops that were observed in experiments and atomistic simulations. This dislocation dynamics formulation applies to self-climb by pipe diffusion for any configurations of dislocations, and is able to recover the available models in the literature for rigid self-climb motion of small prismatic loops. We also present DDD implementation method of this selfclimb formulation. Simulations performed show evolution, translation and coalescence of prismatic loops as well as prismatic loops driven by an edge dislocation by self-climb motion and the elastic interaction between them. These results are in excellent agreement with available experimental and atomistic results. We have also performed systematic analyses of the behaviors of a prismatic loop under the elastic interaction with an infinite, straight edge dislocation by motions of self-climb and glide.