Precursor effects of indium melting have been investigated by means of Mechanical Spectroscopy (MS) and High Temperature X-ray Diffraction (HT-XRD). MS tests evidenced a sharp drop of dynamic modulus in the temperature range between 418 K and 429 K (melting point). At 429 K, HT-XRD showed partial grain re-orientation, peak profile broadening, in particular in the lower part, and peak shift towards lower angles. Experimental results are consistent with density increase of self-interstitials and vacancies in the crystal lattice before melting. Self-interstitials and vacancies play a synergic role in the solid-liquid (S-L) transformation. The increase of self-interstitials over a temperature range of about 10 K before melting has the effect of weakening interatomic bonds (modulus drop) that favors the successive vacancy formation. Finally, the huge increase of vacancy concentration above 428 K leads to the collapse of crystal lattice (melting).