Riparian zones possesses unique ecological position with biota differing from aquatic body and terrestrial lands, and plant–animal coevolution through a propagule-dispersal process may be the main factor for the framework of riparian vegetation was proposed. In the current study, the riparian forests and avifauna along with three subtropical mountainous riparian belts of Chongqing, China, were investigated, and multivariate analysis technique was adopted to examine the associations among the plants’ and birds’ species. The results show that: (1) the forest species’ composition and vertical layers are dominated by native catkins of Moraceae species, which have the reproductive traits with small and numerous propagules facilitating by frugivorous bird species, revealing an evolutionary trend different from the one in the terrestrial plant climax communities in the subtropical evergreen broad-leaved forests. The traits may provide a biological base for the plant–bird coevolution; (2) there are significant associations of plant–bird species clusters, i.e., four plant–bird coevolution groups (PBs) were divided out according to the plant species’ dominance and growth form relating to the fruit-dispersing birds’ abundance; (3) the correlation intensity within a PB ranks as PB I > II > IV > III, indicating the PB I is the leading type of coevolution mainly shaped by the dominant plant species of Moraceae; (4) the PB correlation may be a key node between patterns vs. process of a riparian ecosystem responsible for the riparian native vegetation, or even the ecosystem health. Our results contribute understanding the plant–animal coevolution interpreting the forests’ structures in riparian environments. The results may also be used by urban planner and managers to simulate the patterns for restoring a more stable riparian biota, a better functioning ecosystem in subtropical zone.