Context
Multiwalled carbon nanotubes (MWCNTs) functionalized with lysine via 1,3-dipolar cycloaddition and conjugated to galactose or mannose are potential nanocarriers that can effectively bind to the lectin receptor in MDA-MB-231 or MCF-7 breast cancer cells. In this work, a method based on molecular dynamics (MD) simulation was used to predict the interaction of these functionalized MWCNTs with doxorubicin and obtain structural evidence that allows a better understanding of the drug loading and release process. The MD simulations showed that while doxorubicin only interacted with pristine MWCNTs through π-π stacking interactions, functionalized MWCNTs were also able to establish hydrogen bonds, suggesting that the functionalized groups improve doxorubicin loading. Moreover, the elevated adsorption levels observed for functionalized nanotubes further support this enhancement in loading efficiency. MD simulations also shed light on the intratumoral pH-specific release of doxorubicin from functionalized MWCNTs, which is induced by protonation of the daunosamine moiety. The simulations show that this change in protonation leads to a lower absorption of doxorubicin to the MWCNTs. The MD studies were then experimentally validated, where functionalized MWCNTs showed improved dispersion in aqueous medium compared to pristine MWCNTs and, in agreement with the computational predictions, increased drug loading capacity. Doxorubicin-loaded functionalized MWCNTs demonstrated specific release of doxorubicin in tumor microenvironment (pH = 5.0) with negligible release in the physiological pH (pH = 7.4). Furthermore, doxorubicin-free MWNCT nanoformulations exhibited insignificant cytotoxicity. The experimental studies yielded nearly identical results to the MD studies, underlining the usefulness of the method. Our functionalized MWCNTs represent promising non-toxic nanoplatforms with enhanced aqueous dispersibility and the potential for conjugation with ligands for targeted delivery of anti-cancer drugs to breast cancer cells.
Methods
The computational model of a pristine carbon nanotube was created with the buildCstruct 1.2 Python script. The lysinated functionalized groups were added with PyMOL and VMD. The carbon nanotubes and doxorubicin molecules were parameterized using the general AMBER force field, and RESP charges were determined using Gaussian 09. Molecular dynamics simulations were carried out with the AMBER 20 software package. Adsorption levels were calculated using the water-shell function of cpptraj. Cytotoxicity was evaluated via a MTT assay using MDA-MB-231 and MCF-7 breast cancer cells. Drug uptake of doxorubicin and doxorubicin-loaded MWCNTs was measured by fluorescence microscopy.