The current status of organic low-molecular weight and polymeric materials for third-order nonlinear optics is reviewed. The importance of organic materials lies in their promise of large nonlinear optical figure of merit, high optical damage thresholds, ultrafast optical responses, architectural flexibility, and ease of fabrication. Organic materials exhibiting interesting third-order nonlinear optical properties are discussed to illustrate the importance of structure-property correlations. Results on emerging organic materials that include liquids, dyes, fullerenes, charge-transfer complexes, n-conjugated polymers, dye-grafted polymers, organometallic compounds, composites, and liquid crystals are presented. Organic nonlinear optical materials seem promising for a wide range of applications and their potential for integrated optics should be further explored.