Reducing power losses in engines is considered a key parameter of their efficiency improvement. Nanotechnology, as an interface technology, is considered one of the most promising strategies for this purpose. As a consumable liquid, researchers have studied nanolubricants through the last decade as potential engine oil. Nanolubricants were shown to cause a considerable reduction in the engine frictional and thermal losses, and fuel consumption as well. Despite that, numerous drawbacks regarding the quality of the processed nanolubricants were discerned. This includes the dispersion stability of these fluids and the lack of actual engine experiments. It has been shown that the selection criteria of nanoparticles to be used as lubricant additives for internal combustion engines is considered a complex process. Many factors have to be considered to investigate and follow up with their characteristics. The selection methodology includes tribological and rheological behaviours, thermal stability, dispersion stability, as well as engine performance. Through the last decade, studies on nanolubricants related to internal combustion engines focused only on one to three of these factors, with little concern towards the other factors that would have a considerable effect on their final behaviour. In this review study, recent works concerning nanolubricants are discussed and summarized. A complete image of the designing parameters for this approach is presented, to afford an effective product as engine lubricant.