Hierarchical nanocomposites consisting of NiCo2O4 nanorods and NiCo2O4 nanoparticles through a straightforward two‐step hydrothermal process was employed as a working electrode to examine the electrochemical behavior of glucose. The NiCo2O4@NiCo2O4 heterostructures was confirmed by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray powder diffractometer (XRD), X‐ray photoelectron spectroscopy (XPS) and electrochemistry analysis. Results indicated that glucose is electrochemically oxidized with improved sensitivity at the NiCo2O4@NiCo2O4 sensor, compared to NiCo2O4 sensors. Analytical parameters such as the optimal potential (0.45 V), linear range from 0.4 μM to 5.2 mM, limit of detection (1.1 μΜ) (S/N=3), stability and repeatability (2.7 %) demonstrate the suitability of the prepared sensor for glucose analysis. Moreover, the proposed sensor could be used for actual samples analysis in complex matrices.