Motor recovery after stroke is related to neural plasticity, which involves developing new neuronal interconnections, acquiring new functions, and compensating for impairment. However, neural plasticity is impaired in the stroke-affected hemisphere. Therefore, it is important that motor recovery therapies facilitate neural plasticity to compensate for functional loss. Stroke rehabilitation programs should include meaningful, repetitive, intensive, and task-specific movement training in an enriched environment to promote neural plasticity and motor recovery. Various novel stroke rehabilitation techniques for motor recovery have been developed based on basic science and clinical studies of neural plasticity. However, the effectiveness of rehabilitative interventions among patients with stroke varies widely because the mechanisms underlying motor recovery are heterogeneous. Neurophysiological and neuroimaging studies have been developed to evaluate the heterogeneity of mechanisms underlying motor recovery for effective rehabilitation interventions after stroke. Here, we review novel stroke rehabilitation techniques associated with neural plasticity and discuss individualized strategies to identify appropriate therapeutic goals, prevent maladaptive plasticity, and maximize functional gain in patients with stroke.