Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Although aliphatic nitro compounds, aliphatic nitrates, and aliphatic nitrites have several features in common (nitrogen–oxygen grouping, explosiveness, methemoglobin formation), there are significant differences in their toxic effects.
Although aliphatic nitro compounds, aliphatic nitrates, and aliphatic nitrites have several features in common (nitrogen–oxygen grouping, explosiveness, methemoglobin formation), there are significant differences in their toxic effects.
Although aliphatic nitro compounds, aliphatic nitrates, and aliphatic nitrites have several features in common (nitrogen‐oxygen grouping, explosiveness, methemoglobin formation), there are significant differences in their toxic effects. Some of their attributes are summarized. The esters of nitric and nitrous acid, whose nitrogen is linked to carbon through oxygen, are very similar in their pharmacological effects. Both produce methemoglobinemia and vascular dilatation with hypotension and headache. These effects are transient. None of the series has appreciable irritant properties. Pathological changes occur in animals only after high levels of exposure and are generally nonspecific and reversible. The nitric acid esters of the monofunctional and lower polyfunctional alcohols are absorbed through the skin. Information is not available on the skin absorption of alkyl nitrites. Members of both groups are well absorbed from the mucous membranes and lungs. Heinz body formation has been observed with the nitrates but not with the nitrites. Nitro compounds, like nitrates and nitrites, cause methemoglobinemia in animals. Heinz body formation parallels this activity within the series. Although some members are metabolized to nitrate and nitrite, there is no significant effect on blood pressure or respiration. As with the lower nitrates and nitrites, anesthetic symptoms are observed in animals during acute exposures, but these occur late. The prominent effect is irritation of the skin, mucous membranes, and respiratory tract. This is most marked with chlorinated nitroparaffins and nitroolefins. In addition to respiratory tract injury, cellular damage may be observed in the liver and kidneys. Skin absorption is negligible except for the nitroolefins. The nitramines have entirely different activity. RDX is a convulsant for humans and animals. Skin absorption, irritation, vasodilatation, methemoglobin formation, and permanent pathological damage are either insignificant or absent after repeated doses. Transient illness has been associated with the industrial use or manufacture of these materials, but fatalities and chronic intoxication have been uncommon. Some members of each group present extremely high fire and explosion hazards.
Although aliphatic nitro compounds, aliphatic nitrates, and aliphatic nitrites have several features in common (nitrogen–oxygen grouping, explosiveness, methemoglobin formation), there are significant differences in their toxic effects. Some of their attributes are summarized. The esters of nitric and nitrous acids, whose nitrogen is linked to carbon through oxygen, are very similar in their pharmacological effects. Both produce methemoglobinemia and vascular dilatation with hypotension and headache. These effects are transient. None of the series has appreciable irritant properties. Pathological changes occur in animals only after high levels of exposure and are generally nonspecific and reversible. The nitric acid esters of the monofunctional and lower polyfunctional alcohols are absorbed through the skin. Information is not available on the skin absorption of alkyl nitrites. Members of both groups are well absorbed from the mucous membranes and lungs. Heinz body formation has been observed with the nitrates but not with the nitrites. Nitro compounds, like nitrates and nitrites, cause methemoglobinemia in animals. Heinz body formation parallels this activity within the series. Although some members are metabolized to nitrate and nitrite, there is no significant effect on blood pressure or respiration. As with the lower nitrates and nitrites, anesthetic symptoms are observed in animals during acute exposures, but these occur late. The prominent effect is irritation of the skin, mucous membranes, and respiratory tract. This is most marked with chlorinated nitroparaffins and nitroolefins. In addition to respiratory tract injury, cellular damage may be observed in the liver and kidneys. Skin absorption is negligible except for the nitroolefins. The nitramines have entirely different activity. RDX is a convulsant for humans and animals. Skin absorption, irritation, vasodilatation, methemoglobin formation, and permanent pathological damage are either insignificant or absent after repeated doses. Transient illness has been associated with the industrial use or manufacture of these materials, but fatalities and chronic intoxication have been uncommon. Some members of each group present extremely high fire and explosion hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.