Remaining undetected is often key to survival, and camouflage is a widespread solution. However, extrinsic to the animal itself, the complexity of the background may be important. This has been shown in laboratory experiments using artificially patterned prey and backgrounds, but the mechanism remains obscure (not least because 'complexity' is a multifaceted concept). In this study, we determined the best predictors of detection by wild birds and human participants searching for the same cryptic targets on trees in the field. We compared detection success to metrics of background complexity and 'visual clutter' adapted from the human visual salience literature. For both birds and humans, the factor that explained most of the variation in detectability was the textural complexity of the tree bark as measured by a metric of feature congestion (specifically, many nearby edges in the background). For birds, this swamped any effects of colour match to the local surroundings, although for humans, local luminance disparities between the target and tree became important. For both taxa, a more abstract measure of complexity, entropy, was a poorer predictor. Our results point to the common features of background complexity that affect visual search in birds and humans, and how to quantify them.