Neurofilaments (NFs) are multisubunit, bottlebrush-shaped intermediate filaments abundant in the axonal cytoskeleton. Each NF subunit contains a long intrinsically disordered tail domain, which protrudes from the NF core to form a “brush” surrounding each NF. Precisely how the tails’ variable charge patterns and repetitive phosphorylation sites mediate their conformation within the brush remains an open question in axonal biology. We address this problem by grafting recombinant NF tail protein constructs NF-Light, -Medium, and -Heavy (NFL, NFM, and NFH) to surfaces, yielding protein brushes of defined stoichiometry that can be phosphorylated in vitro. Atomic force microscopy measurements reveal that brush height depends on composition monotonically but not always linearly for binary NFL:NFM or NFL:NFH systems, and that NFM-based brushes are highly extended, while brushes incorporating the much larger NFH are surprisingly compact even after multisite phosphorylation. Complementary self-consistent field theory (SCFT) predicts multilayer brush morphologies for NFM and phosphorylated NFH brushes. Further experiments and SCFT analysis with designed mutants reveal that N-terminal negative charges in the NFH tail repel phosphorylated residues to generate the multilayer morphology, while the C-terminal charge-neutral region contributes to multilayer brush morphology but not total brush height. Charge-shuffled NFM variants show that charge segregation promotes brush collapse near physiological ionic strengths. Collectively, this study supports a role for NFM in establishing a dynamic range for NF brush conformation, lending insight into previous in vitro and in vivo findings. More broadly, this work establishes a platform for dissecting contributions of disordered protein sequence to conformation at interfaces.