Dissecting the explanatory power of ESG features on equity returns by sector, capitalization, and year with interpretable machine learning
Jérémi Assael,
Laurent Carlier,
Damien Challet
Abstract:We systematically investigate the links between price returns and ESG features. We propose a cross-validation scheme with random company-wise validation to mitigate the relative initial lack of quantity and quality of ESG data, which allows us to use most of the latest and best data to both train and validate our models. Boosted trees successfully explain a single bit of annual price returns not accounted for in the traditional market factor. We check with benchmark features that ESG features do contain signif… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.