Neisseria gonorrhoeae releases soluble fragments of peptidoglycan during growth. These molecules are implicated in the pathogenesis of various forms of gonococcal infection. A major peptidoglycan fragment released by gonococci is identical to the tracheal cytotoxin of Bordetella pertussis and has been shown to kill ciliated fallopian tube cells in organ culture. Previous studies indicated that a unique lytic peptidoglycan transglycosylase (AtlA) was responsible for some, but not all, of the peptidoglycan-derived cytotoxin (PGCT) production in certain gonococcal strains. To examine the role of other putative lytic transglycosylases in PGCT production, we made a deletion mutation in a gonococcal gene exhibiting similarity with genes encoding lytic transglycosylases from other bacterial species. The gonococcal mutant was viable and grew normally, but it was less autolytic than the wild-type strain in stationary-phase culture and under nongrowth conditions. The gonococcal mutant was reduced in peptidoglycan turnover, and the profile of the released products showed a reduction in monomeric peptidoglycan. Proportionally more multimeric fragments were released. These results suggest that this gonococcal gene (ltgA) encodes a lytic peptidoglycan transglycosylase and that it is responsible for a significant proportion of the PGCT released by N. gonorrhoeae.