ObjectiveThe occurrence of unpredictable pain crises are the principal determinant of the quality of life for patients with venous malformations (VM). A definite coagulation phenomenon, characterized by an increase in D‐dimer levels and the presence of phleboliths within the malformation, has been previously reported. By applying Virchow's triad and evaluating intralesional samples, our objective is to delineate the coagulation profile and the extent of endothelial dysfunction within the malformation.MethodsWith the authorization of the Ethics Committee, a research project was undertaken on intralesional and extralesional blood samples from 30 pediatric patients afflicted with spongiform VM. Thromboelastometry analyses were performed using ROTEM Sigma, and the concentration of syndecan‐1 was determined by ELISA.ResultsIn the ROTEM analyses, the A5, A10, and maximum clot firmness (MCF) values were below the established reference ranges in the intralesional samples in both the EXTEM and INTEM assays, indicating that intralesional clots had significant instability. Furthermore, during the investigation of the delayed fibrinolysis phase using recombinant tissue plasminogen activator (rtPA) in EXTEM analysis, widespread hyperfibrinolysis was observed intralesional. Additionally, analysis of syndecan‐1 showed significant differences between extralesional and intralesional levels (p < .026) and controls (p < .03), suggesting differences in the state of endothelium.ConclusionsFor the first time, we developed a comprehensive understanding of the coagulopathic profile of VM and the role of endothelial dysfunction in its pathogenesis. These findings will enable the implementation of targeted therapies based on the individual coagulation profiles.