Non-Gaussian quantum states have been deterministically prepared and autonomously stabilized in singleand two-mode circuit quantum electrodynamics architectures via engineered dissipation. However, it is currently unknown how to scale up this technique to multi-mode non-Gaussian systems. Here, we upgrade dissipation engineering to collective (normal) modes of nonlinear resonator arrays and show how to stabilize multi-mode Schrödinger cat states. These states are multi-photon and multi-mode quantum superpositions of coherent states in a single normal mode delocalized over an arbitrary number of cavities. We consider tailored dissipative coupling between resonators that are parametrically driven and feature an on-site nonlinearity, which is either a Kerr-type nonlinearity or an engineered two-photon loss. For both types of nonlinearity, we find the same exact closed-form solutions for the two-dimensional steady-state manifold spanned by superpositions of multi-mode Schrödinger cat states. We further show that, in the Zeno limit of strong dissipative coupling, the even parity multi-mode cat state can be deterministically prepared from the vacuum. Remarkably, engineered two-photon loss gives rise to a fast relaxation towards the steady state, protecting the state preparation against decoherence due to intrinsic single-photon losses, which sets in at longer times. The relaxation time is independent of system size making the state preparation scalable. Multi-mode cat states are naturally endowed with a noise bias that increases exponentially with system size and can thus be exploited for enhanced robust encoding of quantum information.