2015
DOI: 10.1007/978-3-658-09282-5
|View full text |Cite
|
Sign up to set email alerts
|

Dissipative Exciton Dynamics in Light-Harvesting Complexes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
12
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(12 citation statements)
references
References 68 publications
0
12
0
Order By: Relevance
“…The nuclear degrees of freedom are modelled as a discrete primary harmonic bath, which is in turn coupled to a secondary continuous thermal bath consisting of solvent degrees of freedom and any other residual degrees. 36 It is also assumed that the excitons are not directly coupled to the secondary bath.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…The nuclear degrees of freedom are modelled as a discrete primary harmonic bath, which is in turn coupled to a secondary continuous thermal bath consisting of solvent degrees of freedom and any other residual degrees. 36 It is also assumed that the excitons are not directly coupled to the secondary bath.…”
Section: Methodsmentioning
confidence: 99%
“…By construction, the zeroth tier ADO, σ ⃗ 0 (t) := ρ(t), is the reduced system density operator. With the MBO model for the system-bath interaction, bath correlation functions can be expanded as a sum of exponentials, 36,38 thus facilitating the use of Eq.4 to solve the exciton dynamics.…”
Section: Methodsmentioning
confidence: 99%
“…In order to derive a HEOM version based on the Chebyshev decomposition, we start, in analogy to the derivation of the exponential HEOM 52 with the time evolution of the reduced density matrix, ρ S (t), obtained by applying the time evolution operator to the density matrix at t 0 ,…”
Section: Chebyshev Expansion Applied To Heommentioning
confidence: 99%
“…Modeling physical phenomena via the coupling of twolevel systems (qubits) to quantized harmonic oscillators has historically been of great interest in diverse fields ranging from quantum optics [1][2][3][4] and solid-state physics [5,6] to quantum biology [7][8][9][10]. This approach has become frequent in modern physics since fully quantummechanical descriptions may reveal phenomena not covered by classical or semiclassical approaches.…”
Section: Introductionmentioning
confidence: 99%