This work models the propagation of an optical pulse in a 4-level atomic system in the electromagnetic induced transparency regime. By demonstrating that linear and nonlinear optical properties can be externally controlled and tailored by a continuous-wave control laser beam and an assisting incoherent pump field, it is shown how these media can provide an excellent framework to experimentally explore pulse dynamics in the presence of non-conservative terms, either gain or loss. Furthermore, we explore the existence of stable dissipative soliton solutions, testing the analytical results with computational simulations of both the effective (1+1)-dimensional model and the full Maxwell-Bloch system of equations.