Dissipative Non-Slip MHD Nanofluid Flow with Variable Viscousity and Thermal Conductivity in the Presence of Arrhenius Chemical Reaction
Kelvin O. Ogboru,
Muhammad M. Lawal,
Akindele M. Okedoye
Abstract:This research investigates the intricate dynamics of dissipative non-slip magnetohydrodynamic (MHD) nanofluid flow, characterized by variable viscosity and thermal conductivity, under the influence of an Arrhenius chemical reaction. The inclusion of the Arrhenius chemical reaction adds complexity through heat generation or absorption, impacting temperature and concentration gradients. The study is motivated by the extensive applications of nanofluids in engineering and industrial processes, where precise contr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.