We have studied the quasi-free dissociation of quarkonia through a complex potential which is obtained by correcting both the perturbative and nonperturbative terms of the QQ potential at T=0 through the dielectric function in real-time formalism. The presence of confining nonperturbative term even above the transition temperature makes the real-part of the potential more stronger and thus makes the quarkonia more bound and also enhances the (magnitude) imaginary-part which, in turn contributes more to the thermal width, compared to the medium-contribution of the perturbative term alone. These cumulative observations result the quarkonia to dissociate at higher temperatures. Finally we extend our calculation to a medium, exhibiting local momentum anisotropy, by calculating the leading anisotropic corrections to the propagators in Keldysh representation. The presence of anisotropy makes the real-part of the potential stronger but the imaginary-part is weakened slightly. However, since the medium corrections to the imaginary-part is a small perturbation to the vacuum part, overall the anisotropy makes the dissociation temperatures higher, compared to isotropic medium.