“…Functional MRI data is powerful tool for investigating neural activity in the human brain, providing a window into brain organization (Avena-Koenigsberger et al, 2017; Bassett and Bullmore, 2006, 2017; Bassett and Sporns, 2017; Buckner et al, 2011; Bullmore and Sporns, 2012; Busch et al, 2022; Feilong et al, 2021; Gomez et al, 2019a; Gordon et al, 2017; Gratton et al, 2018; Grill-Spector and Weiner, 2014; Huntenburg et al, 2018; Kanwisher et al, 1997; Laumann et al, 2015; Margulies et al, 2016; Murphy et al, 2018; Power et al, 2011; Thomas Yeo et al, 2011) and neural computations (Allen et al, 2021; Baldassano et al, 2017; Breedlove et al, 2020; Caucheteux and King, 2022; Chang et al, 2021; Constantinescu et al, 2016; Doeller et al, 2010; Gomez et al, 2019a; Güçlü and van Gerven, 2015; Hasson et al, 2008; Honey et al, 2012; Huth et al, 2016, 2012; Kay et al, 2015a; Kriegeskorte et al, 2008; Lescroart and Gallant, 2019; Popham et al, 2021; Sha et al, 2015; Wager et al, 2013). However, the contribution of nonneuronal noise, such as motion, heart rate, respiration, and hardware-related artifacts, severely impacts the quality of fMRI data (Bright and Murphy, 2017; Caballero-Gaudes and Reynolds, 2017; Friston et al, 1996; Liu, 2016).…”