Cognitive neuroscience research on working memory has been largely motivated by a standard model that arose from the melding of psychological theory with neuroscience data. Among the tenets of this standard model are that working memory functions arise from the operation of specialized systems that act as buffers for the storage and manipulation of information, and that frontal cortex (particularly prefrontal cortex) is a critical neural substrate for these specialized systems. However, the standard model has been a victim of its own success, and can no longer accommodate many of the empirical findings of studies that it has motivated. An alternative is proposed: Working memory functions arise through the coordinated recruitment, via attention, of brain systems that have evolved to accomplish sensory-, representation-, and action-related functions. Evidence from behavioral, neuropsychological, electrophysiological, and neuroimaging studies, from monkeys and humans, is considered, as is the question of how to interpret delay-period activity in the prefrontal cortex.Working memory refers to the retention of information in conscious awareness when this information is not present in the environment, to its manipulation, and to its use in guiding behavior. Working memory has been implicated as a critical contributor to such essential cognitive functions and properties as language comprehension, learning, planning, reasoning, and general fluid intelligence (Baddeley, 1986;Engle, Kane, & Tuholski, 1999;Jonides, 1995). In this review I will argue against the idea that working memory functions are supported by the operation of one or more specialized systems, and instead, that they arise through the coordinated recruitment, via attention, of brain systems that have evolved to accomplish sensory-, representation-, or action-related functions. One implication of this view is that the contributions of prefrontal cortex (PFC) to working memory do not include the temporary storage of information.