We experimentally demonstrate the dissociative photoionization of CHBrCl2 molecules in a femtosecond laser field by time-of-flight mass spectrum and dc-slice imaging technology. The results suggest that the low kinetic energy components are from the dissociative ionization process of single-charged molecular ions. The angular distribution of fragment Cl+ ions can be attributed to the features of dissociative state and molecular configuration, and that of Br+ ions results from the electronic wave-packet evolution and combination of the multi-dissociation processes. The high kinetic energy components are from the Coulomb explosion of multi-charged molecular ions, and the error of the C-Br distance involved in the Coulomb explosion can be explained by the movement of the effective charge center of the polyatomic molecule.