Natural gas hydrates, a promising clean energy resource, hold substantial potential. Porosity plays a crucial role in hydrate systems by influencing formation processes and physical properties. To clarify the effects of porosity on hydrate elasticity, we examined methane hydrate formation and its acoustic characteristics. Experiments were conducted on sediment samples with porosities of 23%, 32%, and 37%. P- and S-wave velocities were measured to assess acoustic responses. Results show that as hydrate saturation increases, sample acoustic velocity also rises. However, high-porosity samples consistently exhibit lower acoustic velocities compared to low-porosity samples and reach a lower maximum hydrate saturation. This behavior is attributed to rapid pore filling in high-porosity samples, which blocks flow pathways and limits further hydrate formation. In contrast, hydrate formation in low-porosity sediments progresses more gradually, maintaining clearer pore channels and resulting in relatively higher hydrate saturation. Higher porosity also accelerates the shift of hydrates from cementing to load-bearing morphologies. These findings underscore porosity’s significant influence on hydrate formation and provide insights into observed variations in hydrate saturation and acoustic velocity across different experimental conditions.