As a new form for supplying vitamin C, orally disintegrating films (ODFs) were developed C based on hyaluronic acid (HA) under varying casting conditions and the properties were analyzed. The films with different thicknesses (2, 3, and 8 mm, for CT2, CT4, and CT8, respectively) were produced by adjustments made to casting height. Two types of 8 mm thick ODFs produced by single or double casting (4 + 4 mm for CTD4+4) methods were also compared. As film thickness increased, water vapor permeability and tensile strength also increased. Even at equal thickness, manufacturing with double casting exhibited a stronger texture and reduced disintegration compared to single casting. All ODFs met the World Health Organization’s recommended daily vitamin C intake (45 mg/day) with a single sheet. Films showed over 80% dissolution in various solvents, adhering to the Hixson–Crowell cube root law, indicating vitamin C release occurred via porous penetration of the eluate. For CT2, CT4, and CTD4+4, vitamin C release was primarily governed by diffusion within the gel matrix and HA erosion. However, for CT8, HA erosion-induced release somewhat dominated. Based on the sensory test, it seems desirable to adjust the thickness of the film to 2 or 4 mm, because a thickness greater than that increased the foreign body sensation due to prolonged residence in the oral cavity.