We have shown that low viscosity alkyl or hydroxyalkyl ammonium formate (ILs) can dissolve agarose, and higher dissolution can be achieved in the mixed, alkyl or hydroxyalkyl ammonium + imidazolium or pyridinium ILs. The polarity parameters α, β, π*, E T (30) and E T N of these IL systems were measured to explain their dissolution ability for agarose. Dissolved agarose was either regenerated using methanol as a precipitating solvent or ionogels were formed by cooling the agarose-IL solutions to ambient temperature. Exceptionally high strength ionogels were obtained from the agarose solutions in N-(2-hydroxyethyl)-ammonium formate or its mixture with 1-butyl-3-methylimidazolium chloride. Regenerated material and ionogels are characterized for their possible degradation/conformational changes and gel properties (thermal hysteresis, strength, viscoelasticity and conductivity) respectively. A high strength, high conducting ionogel was demonstrated to be able to build an electrochromic window. Such ionogels can also be utilized for other soft matter electronic devices and biomedical applications.