Chemical signaling is ubiquitous in the marine environment. Plankton rely on chemical signals to find mates, hunt prey, and respond to threats, and these small‐scale interactions can propagate into community‐wide cascades and large‐scale ecological changes. The chemical signaling exchange in the open ocean is poorly understood, and fundamental information about concentrations and spatiotemporal variability is lacking. Passive sampling has been used to monitor a wide range of dissolved chemicals, including anthropogenic pollutants and harmful algal toxins, but it is not generally applied to the study of marine chemical ecology. Here we test the compatibility of two resins commonly used for passive sampling via solid phase adsorption toxin tracking (SPATT), Diaion® HP20 and Sepabeads® SP207, with copepodamides, a group of polar lipid signaling compounds produced by copepods. We developed extraction and analysis methods that align with current SPATT practices for algal toxins and show the first measurements of copepodamides from Monterey Bay in California. In lab trials, mean copepodamide recovery from HP20 resin was approximately 240% greater than SP207. In addition, copepodamides were found to have a mean half‐life of 34 h in seawater. Adsorption to HP20 stabilized dissolved copepodamides, increasing the mean recovery after 168 h from 0.62% in seawater to 65.2% from SPATT. Results suggest that SPATT is a sensitive and effective tool for obtaining integrated copepodamide concentrations, spotlighting a novel method to include information from copepod mesozooplankton in time series and field studies.