Aldehydes and ketones, ubiquitous air, cloud, and fog water pollutants, are precursors to secondary organic aerosol formation and photochemical smog. Traditional aldehyde and ketone determination methods involve the addition of 2,4-dinitrophenylhydrazine (DNPH) as a derivatization agent, but many require a large sample volume or a lengthy extraction/concentration process. For fog water, where the sample size is inherently small, a DNPH derivatization method, based on U.S. EPA Method 8315A, was developed to combat this issue. In this method, a manual injection online concentration system in conjunction with HPLC was used, eliminating all liquid-liquid extraction and concentration steps and reducing the required sample volume. Hence, concentration and separation were combined in a single step. Using this injection method shortened the procedure time and also lowered the limit of detection to the nanomolar range. In this study, fourteen fog water samples, collected from October 2012 through April 2014 in Baton Rouge, LA, were analyzed for the concentration of aldehydes and ketones in order to test the feasibility of this method. Dissolved organic content (DOC), ionic concentration, and pH were measured. Formaldehyde, acetaldehyde, acrolein, butyraldehyde, benzaldehyde, and acetone were quantified. The DOC of the collected fog samples varied between 6.2 and 262.2 mgC/L. The wide range of organic content in the fog water samples corresponds to a diverse sample set, highlighted by the large variation of observed acetone concentration (under 5 nM to 1.05 mM). However, formaldehyde had a relatively stable concentration between each event (0.5 to 4.5 μM).