The transverse arch of the foot receives and transfers loads during gait. We aim to identify the difference in its structure between normal feet and hallux valgus (HV) feet and the effects of loading. Two groups, Without-HV and With-HV (HV ≥ 20°), were assessed using a weight-bearing plantar ultrasound imaging device to view the structure of the transverse arch. Measurements were recorded in sitting, quiet standing, and 90% weight-shift (90% W.S.) loading positions on the tested foot. Images were then processed using ImageJ software to analyze the transverse arch length (TAL), the length between the metatarsal heads (MTHs), transverse arch height (TAH), and the height of each MTH. TAL significantly increased in all positions in the With-HV group compared to that in the Without-HV group. It also increased in both groups under loading. TAH was not significantly higher in the With-HV group than in the Without-HV group in sitting and standing positions, except in the 90% W.S position, where both groups showed similar results. TAH decreased in both groups under loading. In summary, the structure of the transverse arch changes in HV feet and under loading conditions. This finding will help understand the structural differences between normal and HV feet and help resolve shoe fit problems in individuals with HV deformity.