Colloidal gold nanoparticles protected with alkanethiolate ligands called monolayer protected gold clusters (MPCs) are synthesized and subsequently incorporated into film assemblies that serve as adsorption platforms for protein monolayer electrochemistry (PME). PME is utilized as the model system for studying electrochemical properties of redox proteins by confining them to an adsorption platform at a modified electrode, which also serves as a redox partner for electron transfer (ET) reactions. Studies have shown that gold nanoparticle film assemblies of this nature provide for a more homogeneous protein adsorption environment and promote ET without distance dependence compared to the more traditional systems modified with alkanethiol self-assembled monolayers (SAM). [1][2][3] In this paper, MPCs functionalized with hexanethiolate ligands are synthesized using a modified Brust reaction 4 and characterized with ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and proton ( 1 H) nuclear magnetic resonance (NMR). MPC films are assembled on SAM modified gold electrode interfaces by using a "dip cycle" method of alternating MPC layers and dithiol linking molecules. Film growth at gold electrode is tracked electrochemically by measuring changes to the double layer charging current of the system. Analogous films assembled on silane modified glass slides allow for optical monitoring of film growth and cross-sectional TEM analysis provides an estimated film thickness. During film assembly, manipulation of the MPC ligand protection as well as the interparticle linkage mechanism allow for networked films, that are readily adaptable, to interface with redox protein having different adsorption mechanism. For example, Pseudomonas aeruginosa azurin (AZ) can be adsorbed hydrophobically to dithiol-linked films of hexanethiolate MPCs and cytochrome c (cyt c) can be immobilized electrostatically at a carboxylic acid modified MPC interfacial layer. In this report, we focus on the film protocol for the AZ system exclusively. Investigations involving the adsorption of proteins on MPC modified synthetic platforms could further the understanding of interactions between biomolecules and man-made materials, and consequently aid the development of biosensor schemes, ET modeling systems, and synthetic biocompatible materials. 5-8
Video LinkThe video component of this article can be found at http://www.jove.com/details.php?id=3441
Protocol
Hexanethiolate Monolayer Protected Gold Clusters SynthesisHexanethiolate functionalized monolayer protected gold clusters (MPCs) are synthesized following a 2:1 1-hexanethiol (C6) to gold mole ratio to produce an average structure of Au225(C6)75. 4-9 Speciï¬c modiï¬cations to the Brust reaction, like ligand type, speciï¬c thiol-to-gold ratios, temperature, and reaction delivery rate, or post-synthesis treatments, 9-11 can yield a diverse range of MPCs with varying core sizes and functional protective groups, respectively. 4 The MPC approximate (average) compositio...