We introduce the concept of weakly distance-regular digraph and study some of its basic properties. In particular, the (standard) distance-regular digraphs, introduced by Damerell, turn out to be those weakly distance-regular digraphs which have a normal adjacency matrix. As happens in the case of distance-regular graphs, the study is greatly facilitated by a family of orthogonal polynomials called the distance polynomials. For instance, these polynomials are used to derive the spectrum of a weakly distance-regular digraph. Some examples of these digraphs, such as the butterfly and the cycle prefix digraph which are interesting for their applications, are analyzed in the light of the developed theory. Also, some new constructions involving the line digraph and other techniques are presented. r