Infection with the protozoan parasite Toxoplasma gondii is a major health risk owing to birth defects, its chronic nature, ability to reactivate to cause blindness and encephalitis, and high prevalence in human populations. Unlike most eukaryotes, Toxoplasma propagates in intracellular parasitophorous vacuoles, but like nearly all other eukaryotes, Toxoplasma glycosylates many cellular proteins and lipids and assembles polysaccharides. Toxoplasma glycans resemble those of other eukaryotes, but species-specific variations have prohibited deeper investigations into their roles in parasite biology and virulence. The Toxoplasma genome encodes a suite of likely glycogenes expected to assemble N-glycans, O-glycans, a C-glycan, GPI-anchors, and polysaccharides, along with their precursors and membrane transporters. To investigate the roles of specific glycans in Toxoplasma, here we coupled genetic and glycomics approaches to map the connections between 67 glycogenes, their enzyme products, the glycans to which they contribute, and cellular functions. We applied a double-CRISPR/Cas9 strategy, in which two guide RNAs promote replacement of a candidate gene with a resistance gene; adapted MS-based glycomics workflows to test for effects on glycan formation; and infected fibroblast monolayers to assess cellular effects. By editing 17 glycogenes, we discovered novel Glc 0-2-Man 6-GlcNAc 2-type N-glycans, a novel HexNAc-GalNAc-mucin-type O-glycan, and Tn-antigen; identified the glycosyltransferases for assembling novel nuclear O-Fuc-type and cell surface Glc-Fuc-type O-glycans; and showed that they are important for in vitro growth. The guide sequences, editing constructs, and mutant strains are freely available to researchers to investigate the roles of glycans in their favorite biological processes. Toxoplasma gondii is a worldwide, obligate intracellular apicomplexan parasite that can infect most nucleated cells of warm-blooded animals (1), with up to 80% of some human populations being seropositive (2). Toxoplasmosis, the disease caused by Toxoplasma, is associated with encephalitis and blindness in individuals whose parasites are reactivated, as can occur in AIDS and other immunosuppressed patients (3). In utero infections can cause mental retardation, blindness, and death (4). Toxoplasma is transmitted by digesting parasites from feline feces (as oocysts) or undercooked meat (as tissue cysts). Once in the host, parasites convert to the tachyzoite form that disseminates to peripheral tissues (e.g. brain, retina, and muscle). The resulting immune response and/or drugs can control tachyzoite replication, but the parasite survives by encysting into slowly growing bradyzoites. Sporadically, burst of cysts allows the parasites to convert to tachyzoites, whose unchecked growth results in cell and tissue damage (5, 6). Currently, no Toxoplasma vaccine exists, anti-toxoplasmosis drugs have severe side effects, and resistance is developing to these drugs (7-11). As individuals remain infected for life, new anti-Toxoplasma drugs a...