The genetic information is stored in the eukaryotic nucleus in the form of chromatin. This is a macromolecular entity that includes genomic DNA and histone proteins that form nucleosomes, plus a large variety of chromatin-associated non-histone proteins. Chromatin is structurally and functionally organised at various levels. One reveals the linear topography of DNA, histones and their post-translational modifications and non-histone proteins along each chromosome. This level provides regulatory information about the association of genomic elements with particular signatures that have been used to define chromatin states. Importantly, these chromatin states correlate with structural and functional genomic features. Another regulatory layer is established at the level of the 3D organisation of chromatin within the nucleus, which has been revealed clearly as non-random. Instead, a variety of intra- and inter-chromosomal genomic domains with specific epigenetic and functional properties has been identified. In this review, we discuss how the recent advances in genomic approaches have contributed to our understanding of these two levels of genome architecture. We have emphasised our analysis with the aim of integrating information available for yeast, Arabidopsis, Drosophila, and mammalian cells. We consider that this comparative study helps define common and unique features in each system, providing a basis to better understand the complexity of genome organisation.