Postrhinal cortex (POR) and neighboring lateral visual association areas are necessary for identifying objects and interpreting them in specific contexts, but how POR neurons encode the same object across contexts remains unclear. Here, we imaged excitatory neurons in mouse POR across tens of days throughout initial cue-reward learning and reversal learning. As such, neurons were tracked across sessions/trials where the same cue was rewarded or unrewarded, during both locomotor and stationary contexts. Surprisingly, a large class of POR neurons were minimally cue-driven prior to learning. After learning, distinct clusters within this class responded selectively to a given cue when presented in a specific conjunction of reward and locomotion contexts. In addition, another class involved clusters of neurons whose cue responses were more transient, insensitive to reward learning, and adapted over thousands of presentations. These two classes of POR neurons may support context-dependent interpretation and context-independent identification of sensory cues.