Background
Galectin 3 (LGALS3) gene expression is associated with poor survival in acute myeloid leukemia (AML) but the prognostic impact of LGALS3 protein expression in AML is unknown. LGALS3 supports diverse survival pathways including RAS mediated cascades, protein expression and stability of anti-apoptotic BCL2 family members, and activation of proliferative pathways including those mediated by beta Catenin. CD74 is a positive regulator of CD44 and CXCR4 signaling and this molecule may be critical for AML stem cell function. At present, the role of LGALS3 and CD74 in AML is unclear. In this study, we examine protein expression of LGALS3 and CD74 by reverse phase protein analysis (RPPA) and identify new protein networks associated with these molecules. In addition, we determine prognostic potential of LGALS3, CD74, and their protein networks for clinical correlates in AML patients.
Methods
RPPA was used to determine relative expression of LGALS3, CD74, and 229 other proteins in 231 fresh AML patient samples and 205 samples were from patients who were treated and evaluable for outcome. Pearson correlation analysis was performed to identify proteins associated with LGALS3 and CD74. Progeny clustering was performed to generate protein networks. String analysis was performed to determine protein:protein interactions in networks and to perform gene ontology analysis. Kaplan-Meir method was used to generate survival curves.
Findings
LGALS3 is highest in monocytic AML patients and those with elevated LGALS3 had significantly shorter remission duration compared to patients with lower LGALS3 levels (median 21.9 vs 51.3 weeks,
p
= 0.016). Pearson correlation of LGALS3 with 230 other proteins identifies a distinct set of 37 proteins positively correlated with LGALS3 expression levels with a high representation of proteins involved in AKT and ERK signaling pathways. Thirty-one proteins were negatively correlated with LGALS3 including an AKT phosphatase. Pearson correlation of proteins associated with CD74 identified 12 proteins negatively correlated with CD74 and 16 proteins that are positively correlated with CD74. CD74 network revealed strong association with CD44 signaling and a high representation of apoptosis regulators. Progeny clustering was used to build protein networks based on LGALS3 and CD74 associated proteins. A strong relationship of the LGALS3 network with the CD74 network was identified. For AML patients with both the LGALS3 and CD74 protein cluster active, median overall survival was only 24.3 weeks, median remission duration was 17.8 weeks, and no patient survived beyond one year.
Interpretation
The findings from this study identify for the first time protein networks associated with LGALS3 and CD74 in AML. Each network features unique pathway characteristics. The data also suggest that the LGALS3 network and the CD74 network each support AML cell survival and the two netwo...