BackgroundWe recently reported that estrogen receptor α (ERα), even in absence of estrogen (E2), plays a critical role in lactotroph homeostasis. The anti-estrogen ICI 182780 (ICI), but not tamoxifen or raloxifene, rapidly promoted the degradation of ERα, and inhibited cell proliferation. However, all three ER antagonists suppressed PRL release, suggesting that receptor occupation is sufficient to inhibit prl gene expression whereas receptor degradation is required to suppress lactotroph proliferation. In this study our objective was to determine whether ERα degradation versus occupation, differentially modulates the biological outcome of anti-estrogens.Principal FindingsUsing the rat lactotroph cell line, GH3 cells, we report that ICI induced proteosome mediated degradation of ERα. In contrast, an ERα specific antagonist, MPP, that does not promote degradation of ERα, did not inhibit cell proliferation. Further, ICI, but not MPP, abolished anchorage independent growth of GH3 cells. Yet, both ICI and MPP were equally effective in suppressing prl expression and release, as well as ERE-mediated transcriptional activity.ConclusionTaken together, our results demonstrate that in lactotrophs, ERα degradation results in decreased cell proliferation, whereas ERα occupation by an antagonist that does not promote degradation of ERα is sufficient to inhibit prl expression.